
 
 

OmniMark - Design Principles 
 
The unique advantages of OmniMark stem from a set of key design principles which, when 
brought together into one tool, deliver a powerful combination of performance and productivity. 
 

• The Streaming Paradigm 
• Rules-based Programming 
• Hierarchical Markup Parsing Model 
• Powerful Pattern Matching 
• Referents 

 
The Streaming Paradigm 
 
The streaming paradigm is an approach to programming that concentrates on describing the 
process to be applied to a piece of data, and on processing data directly as it streams from one 
location to another. In the streaming model, the use of data structures to model input data is 
eliminated, and the use of data structures to model output is greatly reduced. This keeps to a 
minimum the use of system resources when processing large volumes of data. As a side-effect, 
because the processing requirements are consistent, system performance on larger data sets 
can be predicted with a great deal of accuracy. A program will run with equal success on a 2 
kilobyte file or a 2 gigabyte file. 
 
OmniMark has an abstracted streaming model which allows a stream to be attached to different 
sources of input and output — files, databases and messages — with a minimum of effort. This 
abstraction also allows code processing the content itself to be dissociated completely from the 
problems of managing or even knowing about details of the input or output type, with obvious 
productivity and code simplification benefits. 
 
An application may have multiple input streams open to permit data integration. Multiple output 
streams may also be used to feed different targets. For instance a complex application may be 
taking a stream fed from a file, integrating that input with a stream fed by accessing a database 
and outputting the data to multiple systems (potentially in different formats). 
 
Rules-based Programming 
 
OmniMark incorporates a declarative scripting language. This means that an application is 
constructed of rules for dealing with events which are triggered by the recognition of patterns of 
data coming into the program from a stream. In dealing with content the individual pieces of 
content are well known, the order in which they occur is not. This arbitrariness of content is one 
of its basic properties and rules are the best mechanism for dealing with it. OmniMark's rules 
may be triggered by data events generated by the two types of built-in processors, the pattern 
processor and the markup processor. The markup processor is tightly coupled with markup 
parsing. 
 
The two processors may be used in conjunction to process a single piece of content to create 
powerful hybrid applications; where XML is being processed and complex pattern matching is 
used upon the content in the markup - the text in the elements. The pattern processor may also 

© 2007 Stilo e-Publishing Solutions 1



be used ahead of the markup processor to prepare content for parsing - converting non-XML 
into XML for instance. The output stream of the pattern processor is fed in as the input stream of 
the markup processor. 
 
All of these features are implemented in an elegant framework, which results in applications 
consisting of well-delineated functional code blocks both in terms of readability and actual 
functionality, thus producing an easily maintained application. 
 
Hierarchical Markup Parsing Model 
 
Many people concerned with XML will be familiar with, or will at least have heard of, SAX and 
DOM models for processing. SAX is an event-based model and DOM is tree-based. OmniMark 
employs a third model - hierarchical. Like SAX, OmniMark leverages an event-based model, but 
where SAX would generate three events for an element (the start, the content and the end) 
OmniMark generates only one, treating the occurrence of the whole element as a single event 
to activate a rule. Since elements can be nested, a hierarchy of activated rules will be created, 
modeling the structure of the content. This simple model is easy to understand and the resulting 
process flow is clear, concise and thus easy to maintain. 
 
The event-based parsing model fits neatly with the streaming approach to processing content, 
with the markup processor receiving a stream of data and triggering events as the elements are 
found, without needing to buffer or decompose the input. Therefore this model supports the 
design considerations for OmniMark of remaining scalable and performant when processing 
massive data sets or receiving high volumes of content. 
 
In conjunction with the triggering of the rules, the markup processor maintains the current 
element context for the set of elements being processed at any instant. This allows the 
application to query and make decisions based on data about that context including the attribute 
values associated with the elements being processed and their parents. This mechanism has 
been shown to handle the vast majority of content processing requirements. However, by using 
other features of OmniMark this may be augmented should it be necessary - for instance a tree 
of all elements accessed may be constructed in the application for later manipulation. 
 
Powerful Pattern Matching 
 
The OmniMark pattern processor implements a pattern matching language that is both powerful 
and easy to use. Based upon an optimized regular expression mechanism, it has many other 
features, including: 
 

• Maintaining context. The same pattern may have different meanings in different 
contexts. Therefore context needs to be maintained to allow different rules to fire 
in different situations. 

• The ability to lookahead for patterns without actually processing the values. This 
allows program flow to be changed, before the pattern is reached, to allow the 
pattern to be processed in the right context. 

• Complex pattern matching procedures (i.e., independently-called functions). This 
allows sophisticated pattern matching to be encapsulated and reused. 

• Nested pattern matching (matching a pattern within a pattern). 
 

© 2007 Stilo e-Publishing Solutions 2



The pattern processor will activate the associated rule when a pattern defined has been 
matched. These features are encapsulated in a language that is very English-like, making it 
clear, easy to comprehend application functionality, which simplifies both development and 
maintenance. 
 
Referents 
 
Often the order in which content is received as input is not the order in which it is required for 
output. OmniMark's patented referent mechanism allows a placeholder to be inserted in the 
output stream and its value supplied later when it is available. The streaming mechanism 
handles the buffering of output containing unresolved placeholders. The whole referent 
mechanism may be scoped and nested so that buffering is kept to a minimum. Code that is 
processing content needs no knowledge of the mechanism; a referent is just like any other 
target. The major benefit of this mechanism is that it maintains the efficiency of the streaming 
model while enabling powerful re-ordering functionality that would otherwise be severely 
constrained. Referents are a key innovation within the OmniMark language and it is one reason 
why OmniMark is so successful at blending power and performance. 
 

© 2007 Stilo e-Publishing Solutions 3


	OmniMark - Design Principles

